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Lecture 34

Leapfrog Networks

Transconductor Design



Leapfrog Filters
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Introduced by Girling and Good, Wireless World, 1970

This structure has some very attractive properties and is widely used though

the real benefits and limitations of the structure are often not articulated 
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Implications of Theorem 1
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Good doubly-terminated LC networks often much less sensitive to

most component values in the passband than are cascaded biquads !

This is a major advantage of the LC networks but can not be applied practically

in most integrated applications or even in pc-board based designs
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Lossless LC Network

Doubly-terminated Ladder Network with Low Passband Sensitivities

( )1 0 2 1I V V Y= −

( )2 1 3 2V I I Z= −

( )3 2 4 3I V V Y= −

( )4 3 5 4V I I Z= −

( )6 5 7 6V I I Z= −

8 7 8V I Z=

( )5 4 6 5I V V Y= −

( )7 6 8 7I V V Y= −

Complete set of independent equations

that characterize this filter

All sensitivity properties of this 

circuit are inherently embedded in 

these equations!  

Solution of this set of equations is tedious
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Lossless LC Network

Consider now only the set of equations and disassociate them from 

the circuit from where they came
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The interconnections that complete each equation can now be added
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Bandpass Leapfrog Structures
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Consider lowpass to bandpass transformations

Un-normalized Normalized

Review from last lecture



Bandpass Leapfrog Structures
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Bandpass Leapfrog Structure obtained by replacing integrators

by the corresponding transformed block

Zero sensitivity to parameters in the transformed blocks will be 

retained  at the image frequencies of the bandpass filter

Integrators map to bandpass

 biquads with infinite Q
Lossy integrators map to bandpass 

biquads with finite Q

Invariably the resistance spread or the capacitance spread increases with Q

• Does this imply that the area will get very large if Q gets large?

• But what about infinite Q?

• Will infinite Q biquads be unstable?

• Is this a problem ?
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Bandpass Leapfrog Structures
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Bandpass Leapfrog Structures
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Integrators Corresponding to 
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Third-order lowpass 

leapfrog filter

Sixth-order bandpass 

leapfrog filter



Bandpass Leapfrog Structures
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Biquads  Corresponding to Lossless Network 
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“Loss” at input and/or output can usually be incorporated into  finite-Q

terminating biquads instead of requiring additional voltage amplifiers 



Bandpass Leapfrog Structures
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• The bandpass biquads can be implemented with various architectures and the 

architecture does not ideally affect the passband sensitivity of the filter

• Integrator-based biquads are often used in integrated applications

Note the lossless biquads are infinite Q structures !

It is easy and practical to implement infinite Q biquads

Stability of the infinite Q biquads is not of concern

Is it easy to trim a bandpass Leapfrog structure ?



Bandpass Leapfrog Structures
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Bandpass Leapfrog Structures
Integrator-based biquads
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OTA-C Implementations

(Concept)
Infinite Q bandpass biquad

Finite Q bandpass biquad

(Not Differential)

(Not Differential)
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Bandpass Leapfrog Structures
Integrator-based biquads
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OTA-C Implementations

Infinite Q bandpass biquad
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Multiple inputs can be added to lossy integrator too!
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Bandpass Leapfrog Structures
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Note the lossless biquads are infinite Q structures !

Is it easy or practical to implement infinite Q biquads?

Are there stability concerns about the infinite Q biquads?

Yes – have shown by example in gm-C family and also easy in other 

families

Stability of overall leapfrog structure of concern, not stability of individual biquads

Overall leapfrog structure is robust with low passband sensitivities !



Leapfrog Implementations
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Some leapfrog properties
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Integrators Corresponding to Lossless Network 

Instead of having components (such as L’s or C’s) in the image of the lossless 

ladder network there are circuits such as integrators or biquads with more than

one characterization parameters.  Are the sensitivities of |T(jω)| to these 

components also 0 at frequencies where the “parent” passive filter are 0? 

What can be said about sensitivities of parameters such as band edges of 

leapfrog filters?  If these sensitivities are not at or near 0, are they at least 

very small?

No!  Nothing can be said about these sensitivities and they are not 

necessarily any smaller than what one may have for other structures such 

as cascaded biquads

Yes!  The following theorem addresses this issue in the case of integrators



Theorem:  If f(u) is a function of a variable u where u=x1x2, then

1 2

f f f
u x xS S S= +

It can be shown that  if the unity gain frequency of an integrator 

which may be expressed (for example) as 1/RC, then the transfer 

function magnitude sensitivity to both R and C vanish at frequencies 

where the sensitivity to I0 vanishes



Leapfrog Filters 

A Seminal Contribution
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• A valuable contribution ?

• A timely contribution ?

• A clever idea?

• Would someone else have come up with it had 

Girling and Good not made the discovery?

• Example of unlikely publication making major 

disclosure



Leapfrog Filters 
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• A valuable contribution ?

• A timely contribution ?

• A clever idea?

• Would someone else have come up with it had 

Girling and Good not made the discovery?

• Example of unlikely publication making major 
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Transconductor Design

Transconductor-based filters depend directly on the gm of the transconductor

Feedback is not used to make the filter performance insensitive to the 

transconductance gain

Linearity and spectral performance of the filter strongly dependent upon the 

linearity of the transconductor

Often can not justify elegant linearization strategies in the transconductors 

because of speed, area, and power penalties

VOUT
VIN

C

gm



Seminal Work on  the OTA

1969 N.E.C. PROCEEDINGS

December 1969

From:



Current Mirror Op Amp W/O CMFB
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Often termed an OTA
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Introduced by Wheatley and Whitlinger in 1969

Assume M1 and M2 matched
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Assume M1 and M2 matched, 

M3 and M4 matched
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Telescopic Cascode OTA

• Current-Mirror p-channel Bias to Eliminate CMFB

• Only single-ended output available
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Signal Swing and Linearity
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Ideal Scenario:

Completely Linear over Input and Output Range



Signal Swing and Linearity

Realistic  Scenario:

•   Modest Nonlinearity throughout Input Range

•   But operation will be quite linear over subset of this range
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Signal Swing and Linearity

VOUT

VIN

Input 

Range

Output 

Range

VOUT

VIN

Linear 

Input 

Range

Linear

Output 

Range



Linearity of Amplifiers

Strongly dependent upon linearity of transconductance of differential pair
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Differential Input Pairs
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MOS Differential Pair
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What values of Vd will cause all of the current to be steered to the left or the right ?
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Observe !!
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VEB affects linearity

How linear is the amplifier ?

Transfer Characteristics of MOS Differential Pair



How linear is the amplifier ?
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How linear is the amplifier ?
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How linear is the amplifier ?
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How linear is the amplifier ?

 % deviation

I

Vd

2

d

EB

V
V

100 1 1
4
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Vd/VEB θ Vd/VEB θ Vd/VEB θ

0.02 0.005 0.22 0.607 0.42 2.23

0.04 0.020 0.24 0.723 0.44 2.45

0.06 0.045 0.26 0.849 0.46 2.68

0.08 0.080 0.28 0.985 0.48 2.92

0.1 0.125 0.3 1.13 0.5 3.18

0.12 0.180 0.32 1.29 0.52 3.44

0.14 0.245 0.34 1.46 0.54 3.71

0.16 0.321 0.36 1.63 0.56 4.00

0.18 0.406 0.38 1.82 0.58 4.30

0.2 0.501 0.4 2.02 0.6 4.61

It can be shown that the deviation

from the line in % is given by



How linear is the amplifier ?

X % deviation
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A 1% deviation from the straight line occurs at
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What swings on drain currents are typical when using the 

differential pair in a voltage amplifier (OP AMP)? 
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1% Linear = 
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Assume the differential amplifier is the input stage to an op amp with gain Av and 

signal swing VOUTpp

The differential swing at the input is thus
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What swings on drain currents are typical when using 

the differential pair in a voltage amplifier (Op Amp)? 
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If the amplifier is the simple differential amplifier with current source loads
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INpp OUTpp EB1V =( V )V

If λ=.01V-1 and VOUTpp=5V, 

INpp EB1V =0.05V

• This results in a very small nonlinearity in the Op Amp even with very large swings 

on the output.

• The current change is also very small 

• When used in two-stage voltage amplifier structure, the nonlinearity in this structure 

is even much smaller!



What swings on drain currents are typical when using the 

differential pair in a voltage amplifier (Op Amp)? 

Vd
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I
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1% Linear = 

0.5VEB1

OUTpp
INpp

V

V
V =

A

VOUT

Vid/2-Vid/2

IT

IT/2 IT/2

M1 M2

If λ=.01V-1

INpp EB1V =0.05V

Does this imply that large swings on the  output  introduce very little 

nonlinearity when used as an OTA?

• This results in a very small nonlinearity in the Op Amp even with very large swings 

on the output.

• The current change is also very small 

• When used in two-stage voltage amplifier structure, the nonlinearity in this structure 

is even much smaller!

No !   Because when used as an OTA the voltage swings in the input and 

output are often about the same!



Programmable Filter Structures 

B
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sC

AV

CV

BV

0
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C
 =

Often want to program or trim filters (i.e. trim ω0) 

Attractive to do this by adjusting gm , in part, because gm can be 

continuously adjustable with some transconductance devices

Applicable in wide variety of filter architectures (here showing integrator-based) 

C

VA
VBgm

VC



What input range is possible when using the tail 

current to program the  OTA  (i.e. after W/L fixed)? 

Vd

VEB1

IT

I

ID1

1% Linear = 

0.5VEB1

VOUT

Vid/2-Vid/2

IT

IT/2 IT/2

M1 M2

m OX EB T OX

W W
g C V I C

L L
 = ==

• Input signal swing decreases linearly with decreases in gm for fixed W/L

• One decade reduction in gm results in one decade decrease in signal swing

• One decade reduction in gm requires two decade decrease in IT
• Though MOS OTA can have very good single swing with large VEB, very limited 

tail current programmability with basic MOS OTA

• There are, however, other ways to program MOS OTA without big penalty in 

signal swing

( )T

OX

dx I
WμC

2L
V =



Stay Safe and Stay Healthy !



End of Lecture 34
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